Copied to
clipboard

G = C22xC10order 40 = 23·5

Abelian group of type [2,2,10]

direct product, abelian, monomial, 2-elementary

Aliases: C22xC10, SmallGroup(40,14)

Series: Derived Chief Lower central Upper central

C1 — C22xC10
C1C5C10C2xC10 — C22xC10
C1 — C22xC10
C1 — C22xC10

Generators and relations for C22xC10
 G = < a,b,c | a2=b2=c10=1, ab=ba, ac=ca, bc=cb >

Subgroups: 32, all normal (4 characteristic)
Quotients: C1, C2, C22, C5, C23, C10, C2xC10, C22xC10

Smallest permutation representation of C22xC10
Regular action on 40 points
Generators in S40
(1 27)(2 28)(3 29)(4 30)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)
(1 17)(2 18)(3 19)(4 20)(5 11)(6 12)(7 13)(8 14)(9 15)(10 16)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)

G:=sub<Sym(40)| (1,27)(2,28)(3,29)(4,30)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,17)(2,18)(3,19)(4,20)(5,11)(6,12)(7,13)(8,14)(9,15)(10,16)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)>;

G:=Group( (1,27)(2,28)(3,29)(4,30)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,17)(2,18)(3,19)(4,20)(5,11)(6,12)(7,13)(8,14)(9,15)(10,16)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40) );

G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)], [(1,17),(2,18),(3,19),(4,20),(5,11),(6,12),(7,13),(8,14),(9,15),(10,16),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)]])

C22xC10 is a maximal subgroup of   C23.D5

40 conjugacy classes

class 1 2A···2G5A5B5C5D10A···10AB
order12···2555510···10
size11···111111···1

40 irreducible representations

dim1111
type++
imageC1C2C5C10
kernelC22xC10C2xC10C23C22
# reps17428

Matrix representation of C22xC10 in GL3(F11) generated by

1000
010
001
,
1000
0100
001
,
100
010
002
G:=sub<GL(3,GF(11))| [10,0,0,0,1,0,0,0,1],[10,0,0,0,10,0,0,0,1],[1,0,0,0,1,0,0,0,2] >;

C22xC10 in GAP, Magma, Sage, TeX

C_2^2\times C_{10}
% in TeX

G:=Group("C2^2xC10");
// GroupNames label

G:=SmallGroup(40,14);
// by ID

G=gap.SmallGroup(40,14);
# by ID

G:=PCGroup([4,-2,-2,-2,-5]);
// Polycyclic

G:=Group<a,b,c|a^2=b^2=c^10=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations

Export

Subgroup lattice of C22xC10 in TeX

׿
x
:
Z
F
o
wr
Q
<